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Abstract: Extremal N = 2 black holes in four dimensions can be described by an ensem-

ble of D3-branes wrapped on internal supersymmetric three-cycles of Calabi-Yau threefolds

on which type IIB superstring theory is compactified. We construct a similar configuration,

with extra RR and NS-NS three-form fluxes being turned on. We can avoid the Freed-

Witten anomaly on the D3-branes by enforcing the pullback of these extra fluxes to the

D3-branes to vanish at the classical level. In the setup the D3-brane charge is not conserved

since it is classified as a trivial class in twisted K-theory. Consequently, the D3-branes may

disappear by encountering an instantonic D5-brane localized in time. We discuss what

happens on the black hole described by such disappearing D3-branes, relying mainly on

topological arguments. Especially, we argue that another RR three-form flux will be left

as a lump of remnant which is localized in the uncompactified four-dimensional space-time

and that it may carry the same amount of degrees of freedom to describe a black hole, in

cooperation with the original NS-NS flux, after this transition of the D3-branes.
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1. Introduction

Incorporation of extra three-form fluxes in string theory compactification has lead to ex-

citing possibilities such as the stabilization of moduli and a possible explanation for the

hierarchy problem, which provide new ways to construct more realistic phenomenological

models (for a review see [1] and references therein). Besides the desirable consequences on

the effective supergravity, the fluxes impose a stringent non-trivial topological constraint

through the Freed-Witten anomaly [2].

This anomaly must be considered in any situation where we have a non-trivial NS-

NS three-form flux. Essentially it forbids to wrap a D-brane on a cycle supporting a

cohomologically non-trivial NS-NS flux in type II theories. If one insists on wrapping a

D-brane on this wrong cycle,1 the way to cancel the anomaly is to add magnetic sources

1Throughout this paper we shall consider spinc cycles only.
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for the gauge fields induced by the presence of the flux. Those sources are provided by

branes terminating on the anomalous brane, which is especially called instantonic brane

when localized in time. The appearance of instantonic branes carrying such an anomaly

and its consequent cancellation by the addition of extra branes was firstly described in [3].

In the presence of non-trivial NS-NS flux H3, the instantonic brane triggers a transfor-

mation of D-branes into a coupling between NS-NS and RR fluxes. What happens is that

N Dp-branes may decay into the vacuum by encountering an instantonic D(p+2)-brane

which supports N units of NS-NS flux H3. The Dp-brane must be of codimension three

in the Euclidean worldvolume of the instantonic brane. The charge of the disappeared

Dp-branes is, after the transition, carried by the coupling between the NS-NS flux H3

and the magnetic RR flux F6−p related to the instantonic brane, such that the final flux

configuration still carries the same quantum numbers as the disappeared Dp-branes.

Roughly speaking, this topological process is a physical interpretation of the connection

between integral cohomology and twisted K-theory [4]. In this connection, some non-

trivial cohomology classes are obstructed to be lifted to twisted K-theory. The obstruction

follows precisely from the presence of the NS-NS flux H3. Hence, branes wrapped on cycles

Poincaré-dual to the non-lifted forms are not BPS objects classifed by K-theory. The Dp-

branes which disappear by encountering the instantonic brane belong to N torsion classes

of K-theory. Every configuration of branes wrapped on compact and non-trivial cycles in

the presence of a NS-NS flux H3 is potentially anomalous. That implies that what seems

to be a stable bunch of Dp-branes can nevertheless be unstable to decay into vacuum by

interacting with an instantonic brane.

D-branes wrapped on compact cycles have also been used in literature to describe

extremal N = 2 black holes in four dimensions [5 – 17]. They are constructed by wrapping

D3-branes on three-cycles of a Calabi-Yau threefold into which type IIB theory has been

compactified [5, 7]. All quantum numbers related to this BPS state, as well as the entropy,

can be computed in terms of the internal symplectic geometry of the CY moduli space.

A natural question would be the stability of a black hole described by D3-branes when

we turn on a suitable NS-NS flux H3 as in the above argument.2 This is the issue we want

to address in the present paper. We construct a configuration where one has a black hole

described by D-branes, with an extra NS-NS flux H3 being turned on. We show that the

D3-branes providing the description of a black hole may disappear and that they turn into

a configuration of a remnant RR three-form flux F rem
3 which lives in the uncompactified

four spacetime dimensions. Our computation of the entropy is based on two important

assumptions that the back-reaction from the fluxes in the initial configuration is negligible

and that the flux-brane transition is reversible.

This paper is organized as follows: In section 2 we review the construction of the

extremal four-dimensional black hole by wrapping D3-branes on internal cycles. We present

how to compute the black hole mass, entropy and effective potential in four dimensions.

In section 3, we review the required conditions to preserve two supersymmetries in four

2Recently, there also appeared several considerations on black holes under the presence of fluxes, for

instance, the atractor mechanism in [18, 19] and the possible influence of the presence of black holes on the

moduli stabilization in [20].
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dimensions. We construct a configuration where an extra internal flux is turned on without

spoiling the supersymmetries. We examine the potential for the black hole in the flux

background. In section 4, we study the transition of the D3-branes into a remnant RR

fluxes F rem
3 due to the appearance of an instantonic D5-brane. In section 5, this topological

transformation process is interpreted with the black hole picture. In particular the black

hole mass and entropy are estimated. We also estimate the entropy of the fluxes F rem
3 into

which the D3-branes has been transformed. Finally some comments and open questions are

addressed in the last section. In particular a black hole configuration with the remnant non-

exact three-form flux F rem
3 does not exist as a solution for the Einstein-Maxwell equations

in four dimensions [21]. We show a possible interpretation that the ensemble of states

described by the remnant flux F rem
3 could still be regarded as a black hole. In appendix

A, we briefly review the connection between cohomology and K-theory by the so-called

Atiyah-Hirzebruch Spectral Sequence. Appendix B is devoted to elucidate the brane-flux

transition in terms of D-branes currents.

2. Extremal black hole from wrapped D3-branes

Consider a compactification of type IIB superstring theory on a Calabi-Yau threefold Y . An

extremal charged black hole of the effective N = 2 supergravity corresponds to D3-branes

wrapped on internal special Lagrangian cycles of Y [5 – 17]. By choosing a symplectic basis

for the three-cycles in Y as {AI , B
I} with I running for 0, . . . , h2,1(Y ), let us write the

cycle on which N dyonic D3-branes are wrapped as

Σ3 =
∑

I

(eIAI − mIB
I), (2.1)

where eI and mI are the number of times with which a single D3-brane is wrapped on

the cycles BI and AI , that is, the electric and magnetic charges for a single D3-brane,

respectively. These cycles satisfy AI ∩ AJ = BI ∩ BJ = 0 and AI ∩ BJ = −BJ ∩ AI = δJ
I .

By using Poincaré-duality, a symplectic basis for 3-forms in H3(Y ; Z) is defined as {αI , β
I}

where

PD(AI) = βI , PD(BI) = αI , (2.2)

such that
∫

AJ

αI = −

∫

BI

βJ = δJ
I . (2.3)

The self-dual five-form F5, from which the electric D3-brane charge is computed, fulfills

the following equation of motion [22]

d ∗ F5 = dF5 = −µ3κ
2
0 PD(W4) = ∗J4 (2.4)

where as usual, the self-duality has been imposed after getting the equations of motion.

The five-form F5 can be decomposed as [6, 7, 14, 20]

F5 = F3 ∧ ω2 + ∗6F3 ∧ ∗4ω2 (2.5)

– 3 –



J
H
E
P
0
8
(
2
0
0
7
)
0
0
2

where ω2 is a two-form field strength in the non-compact four dimensions (through which

the black hole’s electric and magnetic charge are measured) and ∗4 and ∗6 are the Hodge

dual in the indicated spaces. Note that αI ∧ βJ = δJ
I ∗6 1.

Since the D3-branes wrapped on Σ3 are BPS objects, it is expected that upon dimen-

sional reduction from the ten-dimensional type IIB supergravity, they manifest theirselves

as BPS objects in four-dimensions. Concretely, time-independent BPS configurations in

four-dimensions are described by the metric [14]

ds2 = −e2U(τ)dt2 +
e−2U(τ)

τ4
dτ2 +

e−2U(τ)

τ2
dΩ2, (2.6)

where U(τ) goes to zero for τ → 0 and to infinity at the horizon with τ = 1/r. By

considering the above metric, F5 is self-dual provided

ω2 = g sin θdθ ∧ dφ, ∗4ω2 = e2Udt ∧ dτ, (2.7)

where g is the elementary charge. Imposing the quantization conditions

NmI =

∫

AI×S2

F5 = 2πg

∫

AI

F3, NeI =

∫

BI×S2

F5 = 2πg

∫

BI

F3, (2.8)

one finds that the internal component of the five-form F5 is written in terms of the sym-

plectic 3-form basis as follows,

F3 = N
∑

I

(mIαI − eIβ
I). (2.9)

This form is supported on the internal three-cycle Π3

Π3 =
∑

I

(eIAI + mIB
I). (2.10)

According to the Dirac quantization condition, Σ3 ∩ Π3 = 2mIeI ≡ 1, implying that

the cycles are transversal to each other in Y . This fact leads us to consider some extra

constrains in a model where D3-branes are wrapped on Σ3 and extra flux has been turned

on in the internal manifold, as we shall see in the following. The first straightforward

consequence of Σ3 being transversal to Π3 is that an extra NS-NS three-form supported

on Σ3 cannot be turned on, since it would carry the Freed-Witten anomaly [2]. Since our

goal is precisely to turn on extra flux, we will do it by selecting out a flux from the h2,1 − 1

possible transversal cycles to Σ3, which is precisely supported on Π3. Such alignment

between F3 and the extra flux will play an important role, as we shall see in section 4.2.

2.1 Black hole entropy

Up to now we have reviewed how to express the self-dual five-form F5 in terms of inter-

nal symplectic forms. This notation also allows us to write down important black hole

properties such as the mass and entropy. The BPS mass can be written in terms of a

superpotential (resembling a N = 1 supergravity notation) as

M2
BPS = eK|W|2, (2.11)
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where the superpotential W and the Kähler potential K are given by

W =

∫

Y ×S2

F5 ∧ Ω =

∫

Y

F3 ∧ Ω, K = − log i

∫

Y

Ω ∧ Ω. (2.12)

and Ω being the holomorphic three-form in Y . It is convenient to rewrite the above

potentials in term of the phases

XI =

∫

AI

Ω and FI =

∫

BI

Ω, (2.13)

from which Ω = XIαI − FIβ
I . Hence the superpotential reads

W(X) = N
(
eIX

I − mIFI

)
(2.14)

and the Kähler potential

e−K(X,X) = 2 (Im τ IJ)XIX
J
, (2.15)

where τIJ = ∂FJ/∂XI . Now the BPS mass is written as

M2
BPS =

N2

2 (Im τ IJ) XIX
J

∣∣eIX
I + mIFI

∣∣2 . (2.16)

Following the proposal by Ferrara and Kallosh [11], the entropy of the black hole can

be computed by extremizing the action

S = −
π

4

[
e−K(X,X) + 2iW(X) − 2iW(X)

]
(2.17)

with respect to XI . The extremization condition for S implies that (following the notation

of [7]) at the minimum,

XI
e,m =

(
−iN

Im τ

)IJ (
eJ − mKτJK

)
, (2.18)

for which the entropy is written as

S =
π

2
Im

[
N2

(
1

Im τ

)IK (
1

Im τ

)JL (
eK − mP τPK

) (
eL − mQτQL

)
τ IJ

]

≡ N2Sunit. (2.19)

Note that the entropy is proportional to N2.

2.2 Type IIB supergravity action

The black hole potential VBH can be deduced from dimensional reduction from 10-

dimensional type IIB supergravity action with the metric (2.6). The general bosonic part

of the 10-dimensional action is given by

SIIB =

∫
e−2φ

(
−

1

2
R ∗ 1 + 2dφ ∧ ∗dφ −

1

4
H3 ∧ ∗H3

)

−
1

2

∫ (
F1 ∧ ∗F1 + F̃3 ∧ ∗F̃3 +

1

2
F5 ∧ ∗F5

)
−

1

2

∫
C4 ∧ H3 ∧ F3, (2.20)
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where H3 = dB2, F̃3 = F3 − C0H3, and F5 = F5 −
1
2C2 ∧ H3 + 1

2B2 ∧ F3, with B2 being

the NS-NS two-form potential, F3 = dC2 and F5 = dC4 being the three and five-form RR

field strengths, and C0 and φ being the RR and NS-NS scalars, respectively.

From this action, the equation of motion for the field strength F̃3 is given by

dF̃3 = dF3 − F1 ∧ H3, (2.21)

where F1 = dC0. When compactifying on Y , the total ammount of D3-brane charge in Y

must be zero, namely dF̃3|Y = 0 and hence

dF3 = F1 ∧ H3. (2.22)

This result strongly suggests that the current of D3-branes wrapped in internal 3-cycles of

Y are being absorbed by (or emanating from) a D5-brane localized in time that supports

a non-trivial NS-NS flux.3 We shall come back to this point later.

2.3 Effective scalar potential for the Black Hole

Let us now review how the self-dual five-form F5 (induced by the D3-branes) gives rise to

a localized scalar potential in the uncompactified four-dimensional spacetime. We closely

follow refs. [6, 14].

In this section we consider the case where only the five-form flux F5 is turned on.

Then the above action reads

SIIB = −
1

2κ2
10

∫
F5 ∧ ∗F5

= −
1

4κ2
10

∫
(ω2 ∧ ∗4ω2)

∫

Y

(F3 ∧ ∗6F3) . (2.23)

By using the metric (2.6) one finds that [20]

SIIB = −
1

2κ2
10

∫
d(Vol4)

e4U

r4
VBH, (2.24)

where

VBH =

∫

Y

F3 ∧ ∗6F3, (2.25)

which can also been computed from

VBH = eK
(
DiW DjW Kij + |W|2

)
. (2.26)

Note that the effective scalar potential involving VBH is localized in the spacetime as ex-

pected.

3A D5-brane cannot be wrapped in internal cycles since there are not five-cycles in Y .
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3. Turning on extra flux

At this point we want to answer the question whether the presence of extra flux in the

internal manifold would affect the black hole properties. There are trivial cases in which

the presence of three-form fluxes breaks some of the supersymmetries and we cannot have

much control over black hole properties.4 Here we aim at turning on fluxes while keeping

N = 2 supersymmetry unbroken.

First of all, one cannot turn on NS-NS and RR fluxes such that there is a net D3-

brane charge in the internal manifold. Although it is possible to cancel it by placing

orientifold three-planes with negative tension and charge, its presence would spoil the N =

2 supersymmetry in the 4D background by projecting out the graviphotons in the vector

multiplet which in turn give rise to the charge of the black hole (see for instance [24]).5

Second, as we have said, an extra NS-NS flux cannot be supported on the same cycle

where the D3-branes are wrapped, since the system would suffer from the Freed-Witten

anomaly [2], for a review see [27] and references therein. Hence at least, the NS-NS flux to

be turned on must be supported on Π3. For the case we are interested in, a RR flux must

be aligned to the NS-NS one, since otherwise would generate a tadpole.

These are the trivial cases we shall avoid. Below we consider a case in which three-form

fluxes do not break N = 2 supersymmetry in the flat four-dimensional space time.

3.1 Conditions to preserve N = 2 in 4D

Turning on three-form fluxes and asking for the N = 2 supersymmetry to be preserved in

four dimensions requires some more constraints, as was shown in [28 – 30]. Let us briefly

review their main results.

Let us turn on M units of the complex three-form flux H3 = F ini
3 + τH3, with τ as

usual being the complex IIB dilaton: τ ≡ C0 + ie−2φ. In terms of the symplectic basis, the

initial RR and NS-NS three-form fluxes are written as

F ini
3 = MF

∑

I

(
pIαI − qIβ

I
)
, H3 = MH

∑

I

(
mIαI − eIβ

I
)
. (3.1)

Since we do not want to have a D3-brane charge contribution from the fluxes, we shall take

that H3 ∧ F ini
3 = 0, that is, qIm

I − pIeI = 0. The complex three-form field strength reads

H3 = M
∑

I

(
P IαI − QIβ

I
)
, (3.2)

where

P I = pI + τmI , QI = qI + τeI , (3.3)

4See [23] for a treatment of non-supersymmetric black hole, which appeared after the first version of this

manuscript.
5Note however that if one works at conifold singularities in the CY, N = 2 supersymmetry can indeed

be maintained, as was shown in refs. [25, 26].
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and M = MF + MH . The induced superpotential Wflux = WNS + WR can be written in

terms of the symplectic forms as

Wflux = QI(τ)XI − P I(τ)FI . (3.4)

In the language of N = 1 supersymmetry, the gravitino mass matrix is [28]

SAB =

(
−Wflux + 2i (Im τ)WNS 0

0 Wflux

)
. (3.5)

Therefore, the conditions to preserve both of supersymmetries are to have Wflux = 0 and

WNS = 0, which is realized by treating the complex dilaton τ as a dynamical variable.

Both gravitini remain massless if Wflux = WNS = 0 at the minimum. Hence, in order to

preserve N = 2 supersymmetry, it is necessary to turn on both RR and NS-NS fluxes. Note

also that we have taken the flux H3 to be supported on Π3 in order to avoid Freed-Witten

anomalies.

Turning on the flux H3 induces an effective 4-dimensional scalar potential. From the

ten-dimensional action the contribution from the flux is

S4D = −
1

4

∫

Y

e−2φ (H3 ∧ ∗H3) −
1

2

∫

Y

H3 ∧ ∗H3 = −

∫

Y

Veff, (3.6)

from which one obtains

Veff = −
1

2

∑

IJKL

(
C2

0 +
e−2φ

2

)(
QI −MIKPK

) (
(ImM)−1

)IJ
(
QJ −MJLP

L
)

. (3.7)

The negative definite matrix M is defined as in [30]. Note that when the flux H3 is

turned on, the effective theory in four dimensions does not correspond to the usual N = 2

supergravity but to the gauged N = 2 supergravity, see for instance [31]. The presence

of the NS-NS flux H3 in the internal manifold induces a change in the effective action.

The resulting action of the gauged N = 2 supergravity in four dimensions is given in [30],

where the N = 2 supersymmetry is maintained by the presence of a positive definite scalar

potential.

To summarize, both fluxes, RR and NS-NS, must be turned on and moreover, they

must be supported on the same cycle Π3.

3.2 Black hole plus NS-NS flux

Having described the effective localized scalar potetnial for the black hole, and the necessary

conditions for the fluxes to be compatible with N = 2 supersymmetry, we now turn to the

question about a system conforming to the above two issues: a black hole immersed in

an scalar flux-potential. That is, D3-branes wrapped on internal cycles in the presence of

internal three-form fluxes.

A configuration of D3-branes wrapped on Σ3 in the presence of the flux H3 would

effectively correspond to putting a 4D black hole in a background given by the scalar

– 8 –
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potential Veff. The total effective 4D scalar potential (black hole plus flux) would be given

as in [20] by

S ∼ −
1

2κ2
10

∫
d(Vol4)

(
1

r4
VBH + Veff

)
. (3.8)

In the previous section we have seen that by wrapping D3-branes on internal three-cycles,

we get an extremal N = 2 black hole in the four-dimensional effective theory when the

extra flux H3 is turned off. As is mentioned above, when one turns it on, the effective

theory after compactification becomes a N = 2 gauged supergravity [30].

In order to compute black hole properties, we assume that the BPS states described by

the metric (2.6) are not altered by the presence of the scalar potential Veff. This assumption

is backed up by the following argument. Before turning on the extra flux H3, the five-form

F5 related to the D3-brane is split into two parts: the internal F3 and the four dimensional

divergent two-form ω2. The former is compatible with BPS states in four dimensions. The

extra flux H3 that we are turning on is precisely along the internal three form flux F3 from

the D3-brane. So we expect that such a BPS state does not suffer a change by turning on

H3.

From our assumption, it follows that the black hole properties are not altered by the

flux H3 since the mass and charge associated to the black hole in four dimensions comes

from the mass and charge for the internally wrapped D3-branes. The flux H3 does not

contribute to the D3-brane charge or mass. By construction, it merely changes the effective

potential Veff uniformly in four dimension. Specifically, since
∫

AI

H3 = MmI (3.9)

is not a two-form in four dimensions, a four dimensional observer does not measure any

divergence in the electromagnetic field (the scalar potential Veff is not localized as VBH).

Also, the BPS mass is given in terms of the superpotential WBH which is null for the NS-NS

flux.

On the other hand, we certainly expect to have a change in the entropy of the whole

system, namely the black hole plus flux. Under our assumption, the total entropy of the

system is given by

Stotal = SBH + Sflux, (3.10)

where Sflux is the entropy related to the presence of the NS-NS flux. Note that reversibility

is assumed here. We note again that the presence of flux does not trigger a back-reaction

since it does not contribute to the D3-brane charge tadpole.

4. Flux-brane transition and twisted K-theory

The configuration of branes and fluxes described in the previous sections leads to some

non-trvial topological restrictions which in the end establishes a transition between branes

and fluxes. In this section we shall see that such transition is properly understood in

– 9 –
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terms of twisted K-theory classes. Therefore we shall begin with a brief description of the

role played by twisted K-theory trivial classes in the brane-flux transition. Later on, we

shall show that our black hole configuration in the presence of extra flux cointains all the

required ingredients to drive such a transition.

4.1 Twisted K-theory and the MMS instanton

In general, a homological cycle in a compact space can be wrapped by any D-brane, as far

as the cycle is not trivial. However, this is not the only constriction to be fullfiled by the

cycle. As it was shown in [2], the most general constriction reads,

W3(Σ) + [H3] = 0, (4.1)

where W3(Σ) is the third Whitney class of a cycle Σ. If the cycle Σ does not satisfy the

above equation, a brane wrapped on it would suffer from the Freed-Witten anomaly. In

the abscence of the NS-NS flux, the condition W3(Σ) = 0 tells us that the cycle must be

spinc. Since we are working in a compact manifold, by the application of the Poincaré-

duality, one can take the above homological constraint into a cohomological one. Let us be

more specific and consider a p-cycle Wp in the compact space M on which a Dp-brane can

be wrapped. We must take care on the required conditions for the cycle to be wrapped

with a D-brane [3]. The cycle defines a class [Wp] ∈ Hp(M ; Z). By applying Poincaré-

duality one relates the p-cycle Σp with an (n − p)-cocycle σn−p in H(n−p)(M ; Z) where

dim M = n. Therefore, the cocycle σn−p represents a Dp-brane wrapped on Σp. Up to this

point, D-brane RR charges are classified by (co)homology of M .

An extra condition, as we just saw, is that Σp must fulfill eq. (4.1) which in cohomo-

logical form reads6

d3(σn−p) ≡ Sq3(σn−p) + [H3] ∧ ωn−p = 0, (4.2)

where Sq3 is the Steenrod Square.

Hence one sees that the cocycle σn−p represents an anomaly-free Dp-brane provided it is

closed under the linear map d3. A D-brane wrapped on a non-trivial cycle but for which its

representative cocycle is not closed under d3 is not consistent and cannot be a stable object

carrying a RR-charge. It is then expected that the group which classifies consistent D-

brane cohomology representatives must contain cohomological non-trivial cocycles, which

also belong to Ker d3.

However, as well as for cohomology, it could be that some cocycles are not only exact

under d3 but also closed. The physical significance of these cocycles has been studied in

the seminal paper by Maldacena, Moore and Seiberg (MMS) [3]. A d3-exact (n−p)-cocycle

satisfy

d3(πn−p−3) = Sq3(πn−p−3) + [H3] ∧ πn−p−3 = PD(Σp ⊂ Πp+3) ∧ πn−p−3 6= 0, (4.3)

for πn−p−3 being Poincaré-dual to the cycle Πp+3. The exactness under d3 tells us that a

Dp-brane can be wrapped on Σp since such a cycle satisfies the Freed-Witten anomaly-free

6We are considering the case for which there is not torsion.
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condition. However they can be contained in a higher dimensional cycle Πp+3 which in turn

is not closed under d3. Hence, Dp-branes wrapped on Σp can nevertheless be unstable since

at some point will be immersed in a non-stable brane. Concretely, a Dp-brane wrapping

a spatial cycle Σp, propagates in time and terminates on an instantonic D(p + 2)-brane

wrapped on Πp+3, for each unit of H3.

Consequently, stable D-branes are represented by those cocycles which are closed but

not exact under the map d3. Let us define such a group by

Ep
3(M) =

Ker d3|Hp

Im d3|Hp−3

, (4.4)

which roughly speaking is a “cohomology” of d3. This algorithm by which integral coho-

mology is refined, can actually be continued for higher linear maps such as d5 that takes

p-cocycles into (p + 5)-cocycles and so on. The final set of cocycles, after a finite chain of

steps, forms a group that resembles the so-called twisted K-theory group for M . A more

formal description of this connection between cohomology and twisted K-theory, known as

the Atiyah-Hirzebruch Spectral Sequence (AHSS), is given in appendix A. It is sufficient

at this point to say that stable branes must be represented by twisted K-theory classes.

An instantonic brane by itself is FW anomalous, but the anomaly is precisly cancelled by

adding codimensional 3 D-branes wrapped on trivial homology classes under d3.

It is important to point out a consequence of the decay of branes represented by trivial

cycles in twisted K-theory. The appearence of the instantonic D(p + 2)-brane induces the

appearence of a flux ∗Gp+4 which couples magnetically to the instantonic brane. Therefore

the charge of the dissapeared branes is now carried by the coupling between the NS-NS

flux H3 and the magnetic field strength ∗Gp+4. This is

QDp
=

∫
H3 ∧ ∗Gp+4. (4.5)

At the classical level and for branes wrapped on spinc cycles, as is the case for the

present paper, the differential map d3 is reduced to d3 = H3∧. A more pedestrian way to

see the above issues is presented in appendix B, where the flux-brane transition is described

in terms of D-brane currents.

4.2 D3-branes transition to flux

Up to now we have considered wrapping D3-branes on Σ3 in the presence of the flux

H3 = M(mIαI − eIβ
I). Since the internal part of F5 is aligned with the flux H3, one gets

that

F3 = H3 ∧ C0, (4.6)

where C0 = N/M . By constraining C0 to be an integer, one can formally write that

C0 ∈ H0(Y ; Z). In terms of the differential map d3 the above expression reads

d3C0 = H3 ∧ C0 ∈ H3(Y ; Z). (4.7)
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The zero-form C0 is Poincaré-dual to a six-dimensional cycle in the Calabi-Yau manifold

Y and it is not closed under the linear map d3. According to the previous statements, this

means that a brane wrapped on the six-cycle (i.e., the whole CY) should be anomalous since

the Freed-Witten condition is not fullfiled and C0 would not belong to E0
3(Y ). Therefore,

an instantonic D5-brane wrapped on this cycle is in itself a potentially anomalous brane.

On the other hand F3 is not only closed under d3 but also exact and it is a trivial class in

E3
3(Y )

F3 = d3(C0). (4.8)

Hence, D3-branes wrapped on PD(−F3) = Σ3 would dissapear by encountering the

instantonic D5-brane wrapped on Π6 = PD(C0). However they are precisely the D3-branes

giving rise to the black hole. Therefore, after the appearence of the instantonic D5-brane,

the D3-branes disappear leaving as a remnant a magnetic flux F rem
3 suppported on the

uncompactified three-dimensional space.

Even if the decay of branes into flux is topologically possible, the transition occurs only

when it is allowed energetically. A simple dimension counting argument shows that it is

energetically favored to smear out a D3-brane into a D5 and turn it into a magnetic flux.7

However more qualitative description requires to use a specific metric as in [32, 33] where

the deformed conifold metric is used to show that the nucleation of five-branes into which

D3-branes are dissolved is energetically available. Since we are considering the topological

aspects of the transition, we will not study the transition in a particular metric. The reader

should keep in mind that even though the flux-brane transition is consistent with charge

conservation in terms of the triviality of branes in twisted K-theory, such a decay will take

place only if it is energetically allowed.

5. Transition of black hole

Let us consider N D3-branes wrapped on Σ3 and M units of H3 in Π3. A 4D observer

measures the charge of the black hole (and an additional scalar field). Via the process

described above, M D3 branes disappear by encountering an instantonic D5-brane wrapped

on the six-cycle in Y . After the disappearence of both D3 and D5-branes, there is a

magnetic field strength remnant F rem
3 supported in the three-dimensional space. Hence,

the mass of the black hole is reduced since now there are only (N −M) D3-branes wrapped

on Σ3,

M2
BPS =

(N − M)2

2 (Im τ IJ) XIX
J

∣∣eIX
I + mIFI

∣∣2 . (5.1)

The situation seems “catastrophic” for the black hole when there are the same number

of D3-branes as NS-NS flux units (N = M). In such a case, the D3-branes are completely

transformed into flux. The BPS mass vanishes M2
BPS = 0 and since the RR field strength

7We thank J. Evslin for bringing this point to our attention.
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Time

CY  3

instantonic D5 wrapping the whole CY

3D−space

3

N D3 wrapping a 3−cycle

N units
of H 3

N units
of H3

N units of RR 3−form flux

Figure 1: Transformation of the black hole made from N internally wrapped D3-branes into a

configuration of a RR three-form flux in the uncompactified three-dimensional space. The trans-

formation is triggered by the presence of the N units of NS-NS flux and the appearence of an

instantonic D5-brane.

F5 (for the D3-branes) has also disappeared, the charge cannot be measured by it.8 Hence,

all the D3-brane charge is now carried by the NS-NS and RR fluxes,

QD3 =

∫

Π3×R3

H3 ∧ F rem
3 = 2πgN. (5.2)

The whole process is depicted in figure 1.

The fact that the charge is now carried by the internal NS-NS flux H3 and the new RR

flux F rem
3 created by the instantonic D5-brane lets us fix another property of F rem

3 . Before

the topological transition, the D3-brane charge was finite, equal to N in D-brane charge

units. After the transformation the brane charge is carried by the fluxes and henceforth

must also be finite and equal to N . The N units are given by the internal NS-NS flux,

while
∫

R3

F rem
3 = 2πg. (5.3)

The RR flux F rem
3 can be written as

F rem
3 = F123(~x) dx1 ∧ dx2 ∧ dx3. (5.4)

Since the integral of F123(~x) = F (~x) over the three-dimensional space must be finite,

F (~x) → 0 for ~x → ∞ and the three-flux must be localized in the three-dimensional space.

One simple solution would be something roughly of the form F rem
3 = 2πgδ3(r) sin θdr ∧

8The first case for a black hole to become massless was studied in [5] in the conifold approximation by

shrinking to zero the cycle on which the D3-branes are supported.
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dθ ∧ dφ, being localized around the center of the former black hole. This is schematically

expressed in the upper configuration in figure 1.

A non-static solution is also permissible [21], e.g., a flux configuration which smears out

over time. Such a situation would lead to more drastic consequence, decay of an extremal

black hole, which certainly requires more careful and detailed study. Here we leave it for

future research.

Finally we must concern on the possibility that the final configuration of flux would

not be consistent with N = 2 supersymmetry. Although a deeper study is required to

fully answer this question, we can give here an explanation involving only the bosonic part

of the fields. The initial configuration of flux, i.e., F5 = ω2 ∧ F3 carry the electric and

magnetic charges of the black hole, being the two-form ω2 divergent. In other words, the

equation of motion for the five-form field strength is

dF5 = dω2 ∧ F3. (5.5)

This is actually an exact 6-form in the ten-dimensional spacetime. After the transition,

such a form disappears leaving a remnant which indeed can built up a six-form from which

the same previous-transition black hole charge is gathered. Since the produced RR field

strength F rem
3 satisfies the Bianchi identity dF rem

3 = 0, can be locally written as an exact

form, this is F rem
3 = dC2. Hence the final configuration of fluxes consists of an internal

three-form H3 (playing the role of the former F3) and a divergent two-form C2 (plying the

role of the former ω2), where C2 = g sin θdθ ∧ dφ. In this way, C2 is locally a solution for

the black hole equations for the metric (2.6).

5.1 Entropy after transition

So far, we have shown how the mass and charge are transformed by the appearance of the

instantonic brane. However, as we said before, the entropy also suffer from changes by the

presence of external fluxes. We aim at computing the entropy of the configuration after

the transformation between branes and fluxes. By assuming that the process is reversible,

it is possible to compute the entropy related to the flux H3 ∧F rem
3 , which lives both in the

uncompactified three-dimensional space and in the internal space Y . First of all, it is clear

that for the remaining (N − M) D3-branes, the black hole entropy reads,

Safter
BH = (N − M)2Sunit. (5.6)

Now the M units of D3-brane charge, carried by the fluxes H3 ∧ F rem
3 , should contribute

with an entropy Sflux such that

S ′ = SRR + Sflux, (5.7)

since both fluxes are localized in diferent spaces. We have assumed that the process is

reversible and hence the total entropy is conserved. Then it follows that the entropy of the

black hole before the transition should be equal to the entropy of the lowered-mass black

hole plus the RR flux

Sbefore
BH = Safter

BH + SRR. (5.8)
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The entropy for the remnant RR flux is hence given by

SRR = M(2N − M)Sunit. (5.9)

Note that for the case N = M , all entropy is related now to the RR flux.

One may think that any flux F rem
3 could give rise to a static spherical solution

for Einstein-Maxwell (EM) equations that again reproduces a black hole in the four-

dimensional effective theory. If this was the case, the difference between the original black

hole and the one produced by the flux would only be the type of associated degrees of

freedom. However, as was shown in [21] a direct solution for a globally non-exact form is

not possible, namely, there cannot be any spherically symmetric charged black hole solu-

tion for the EM equations under the presence of the three-form flux F rem
3 . In this sense, a

three-form flux cannot give rise to a black hole unless it is globally exact.9

If our assumption that the process being reversible should hold, the final flux configu-

ration must somehow describe the same black hole. The following points can be made to

support this argument.

• Even when the BPS-condition does not hold with non-zero H3 flux, the initial D3-

branes would still represent a black hole due to the Thorne’s Hoop conjecture. Also

the same argument seems to conclude that the final bunch of RR flux in 4D becomes

a black hole.

• Regardless of the assumptions, it would be natural that the equivalence of brane

and flux holds in general not only for the RR sector but also for the NS-NS sector

including gravity.

• The created RR flux is also localized in the three-dimensional space.

• If the three-form remnant flux would have been a NS-NS flux, which directly involves

gravity, the conclusion that such a flux describes a black hole would be more naturally

expected. A transition between D3-branes and NS-NS fluxes can occur for instantonic

NS5-branes in the presence of non-trivial units of RR flux. This process is actually

an S-dual picture of the flux-brane transition of our consideration, which has been

sucesfully tested for particular cases (see [27] and references therein).

• It might be that the resultant ensemble of states consisting of the flux is still a black

hole even though there cannot be a direct black hole solution with flux [35] (see

below).

6. Conclusion and discussions

In this paper we have shown that, under the presence of the non trivial NS-NS three-form

flux H3 in the internal space, the four dimensional black hole described by D3-branes may

disappear via the topological process that transforms branes into fluxes. A NS-NS flux

9In [34] a wormhole solution is studied with the same ingredients.
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induces the Freed-Witten anomaly on an instantonic D5-brane which must be canceled by

a D3-brane ending on it. Applying this fact to the system of the D3-branes wrapped on

an internal Calabi-Yau cycle under the presence of extra NS-NS flux H3, we have shown

that the black hole described in four dimensions would suffer from the same topological

transition.

Under the four-dimensional perspective, the black hole would disappear leaving as a

remnant a RR three-form flux F rem
3 localized in the uncompactified four spacetime dimen-

sions. In order to compute the black hole quantities, we have assumed that the black hole

represents a BPS state even in the presence of the NS-NS flux H3, namely, that there is not

interplay between the effective scalar potential induced by the presence of the fluxes and

the extremal black hole except for the transition drived by the instantonic brane. In other

words, our assumption is that the BPS states in the usual N = 2 four-dimensional super-

gravity are preserved in the N = 2 gauged supergravity. The charge (and mass) carried

by the black hole before the topological transition driven by the instantonic D5-brane is

afterwards carried by the coupling between the NS-NS flux H3 and another RR three-form

flux F rem
3 emanating from the D5-brane.

If our assumption of the BPS-ness of the initial black hole is valid, it implies that even

the extremal black hole suffers from the transition that exchanges topologically different

configurations which carry the same charge and mass.

Regardless of the extremality of the initial black hole, the solution to the Einstein-

Maxwell equations in the presence of the remnant RR flux F rem
3 , which is not globally

exact, cannot be a spherically symmetric charged black hole solution, implying that at

the level of gravity the initial black hole does suffer a change. However, this does not

necessarily mean that the final flux configurations cannot make an (extremal) black hole.

Recently, it has been conjectured that an ensemble of the different solutions without horizon

corresponds to a black hole [35]. According to it, the horizon radius is nothing but the

size of the region where the solutions in the ensemble differs each other. This might be the

case for the final configurations. Interesting enough, the wormhole solution is found in [34]

with which the integration of F rem
3 over a three-cycle can be finite and equal to the charge

of the disappeared black hole.

There are many open questions. First of all, the already mentioned topological trans-

formation was explored some years ago in the context of the conifold approximation [36]. In

this scheme, the moduli space describing the geometry of the conifold on which a D3-brane

is wrapped changes after a topological transformation under which the three-cycle of the

confiold shrinks to zero and blow up into a two-cycle. Particularly, the complex structure

moduli were exchanged into the Kähler moduli. It would be very interesting to go further

and study what happens with the Calabi-Yau moduli under the presence of an instantonic

brane.

In this paper, we have treated the purely topological aspects of the process and there-

fore no dynamics is analyzed. Time evolution of the S(pacelike)-brane has already been

considered for simpler setup [37, 38]. It is of importance to study the dynamics of this

transition from black hole into the RR flux.

Another interesting question arises from the computation of the entropy. As was men-
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tioned at the begining of this paper, the black hole entropy can be computed by extremizing

the central charge (which turns out to be also an extremization of the superpotential). This

is now a standard procedure to compute it, since we are dealing basically with open strings

(with D3-branes present). Now, since we are addressing only a topological transition, we

expect to have a configuration keeping the same quantum numbers and more importantly

the same entropy. However, due to the fact that for N = M we do not have D3-branes

anymore, there are not degrees of freedom related to open strings. The entropy should

be computed from a closed string perspective. This strongly suggests a way to compute

entropy by other methods as was conjectured in [15], where the entropy is gathered from

the topological partition function |Ztop|
2. It would be very interesting to have a detailed

description of the entropy for a NS-NS field in terms of the topological partition function,

which would provide another support for this conjecture.
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A. The Atiyah-Hirzebruch spectral sequence

Here we briefly review the connection between cohomology and K-theory in terms of the

Atiyah-Hirzebruch Spectral Sequence (AHSS) (for further details, see [39, 3, 27]). Essen-

tially AHSS is an algorithm which relates integral cohomology with twisted K-theory.

The relation involves the construction of twisted K-theory classes from integral co-

homology classes by a finite number of steps. In general, an integral cohomology class

[ωp] ∈ Hp(X; Z) does not come from a twisted K-theory class [x] ∈ K(X). Hence, the

algorithm begins with cohomology. At this step, cohomology is the first approximation to

twisted K-theory and it is denoted by E1(X). At the m-th step, the approximate group is

denoted by Ep
m(X), where10

K(X) ∼ Ep
m ≡

Ker dm|Ep
m−2

Im dm|
E

p−m
m−2

, (A.1)

such that, the first approximation is

Ep
1(X) = ⊕pH

p(X; Z). (A.2)

10In this section, “Im” stands for an image rather than an imaginary part.

– 17 –



J
H
E
P
0
8
(
2
0
0
7
)
0
0
2

The second step is to consider forms which are closed under the differential map

d3 ≡ Sq3 +H3∧, (A.3)

with d3: Hp(X; Z) → Hp+3(X; Z). Discarding those which are exact, this defines the group

Ep
3(X) =

Ker d3|Hp

Im d3|Hp−3

. (A.4)

After this step, only those forms which are closed will survive and represent stable D-branes

in string theory provided the NS-NS field is identified with H3. Those forms which are not

closed represent the instantonic branes that we discuss in this paper. Finally, (p+3)-forms

which belong to the trivial class satisfy

d3ωp = Sq3(ωp) + H3 ∧ ωp = σp+3, (A.5)

and represent branes which can be unstable. Note that such forms belong to torsion classes

in K-theory according to the integral class of H3 (upon the isomorphism with the field).

One can go further defining several groups in order to get a closer approximation to

K-theory. However, the algorithm ends after a finite number of steps. At the end, one gets

a group which is called “associated graded group” Gr(X) given by,

Gr(KH(X)) = ⊕pE
p(X). (A.6)

This group is in some cases the K-theory group.11 However, in other cases it is necessary

to solve an extension problem, since

Gr(KH(X)) = ⊕pKH,p(X)/KH,p+1(X). (A.7)

In cases as in this paper, the second step is the final approximation. Hence, by dropping all

forms closed under d3 one gets a K-theory class. All branes which belong to a non-trivial

class in this “cohomology” of d3 are stable objects in string theory.

B. Flux-brane transition

The configuration of N D3-branes wrapped on Σ3 and an extra NS-NS flux on Π3 suffers

from a topological transition [3, 27, 40]. To see this in more physical terms, consider the

D3-brane action in 10 dimensions,12

S = −
1

2κ2
0

∫
F5 ∧ ∗F5 + µ3

∫
C4 ∧ PD(W4) +

1

4κ2
0

∫
C4 ∧ H3 ∧ F3, (B.1)

where the last term is the Chern-Simons term from the ten-dimensional type IIB super-

gravity. Now the equation of motion for the self-dual F5 is modified from eq. (2.4) as [22]

d ∗ F5 = −κ2
0µ3 PD(W4) + H3 ∧ F3. (B.2)

11In the context of string theory, this happens in the absence of orientifold planes.
12We shall use F3 to denote the RR flux which is the magnetic field strength for a D5-brane and G3 as

the internal part of the self-dual five-form G5.
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Note that the 3-form fluxes H3 and F3 are supported transversally to the cycle Σ3.

The coupling H3 ∧ F3 contributes to the D3-brane charge and this is usually used in

flux compactifications. However if dF3 6= 0, the presence of a D5-brane is required and

there are only two possible ten-dimensional configurations:

1. There is a normal D5-brane on which the D3-brane is attached. The intersection

submanifold is of codimension three on W6. Nevertheless, since there are not five-

cycles in Y for a D5-brane to be wrapped, this configuration must be discarded for

our model.

2. There is an instantonic D5-brane localized in time (D5 wrapped on a six-dimensional

cycle on Y ) upon which the D3-brane terminates. A D3-brane disappears for each

unit of NS-NS flux H3 by the topological transition.

Let us study the second option. The equations of motion implies the non-conservation of

the D3-brane current

d ∗ J4 = H3 ∧ dF3, (B.3)

where the D3-brane charge is computed through ∗J4. The coupling H3 ∧ F3 induces a

D3-brane charge but it does not represent a presence of D3-branes. What it is conserved

is the total charge from D3-branes and fluxes

d(∗J4 + F3 ∧ H3) = 0. (B.4)

First in the absence of D5-branes, or equivalently for F3 = 0, the only source for D3-brane

charge is the N D3-branes themselves which is measured by ∗J4. At a certain time, an

instantonic D5-brane appears supporting M units of NS-NS flux. In principle, the brane

is anomalous in the sense of Freed-Witten [2]. However the incoming N D3-branes cancel

the anomaly [3], by ending at the instantonic brane.

Since the variation of the current of D3-branes is
∫

d ∗ J4 = M, (B.5)

there remains only N − M D3-branes after the instantonic disappearance. The M D3-

branes have disappeared by contacting the instantonic brane. However, there is a remnant

which corresponds to a magnetic field strength related to the instantonic D5-brane. This

flux is a 3-form F3 supported on a transversal cycle to the instantonic brane. The D3-brane

charge is now carried by the coupling
∫

Π3×R3

H3 ∧ F3 = M · 1 = M, (B.6)

satisfying the fact that the total charge is conserved.

The equation of motion for the flux F5 can be reduced from the ten-dimensional

spacetime to the compact CY manifold Y as

d∗F5 = ∗J4 + H3 ∧ ∗G7, (B.7)
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where ∗ is the Hodge dual acting on the compact manifold Y and time so that ∗G7 is

a zero-form in Y and a three-form in the uncompactified three-dimensional space. The

flux ∗G7 = F̃0 corresponds to the magnetic field strength for one instantonic D5-brane

wrapped on the six-cycle in Y .13 Hence, before it appears, the flux satisfy ∗G7 = 0 and

the D3-brane charge is measured by

Qbefore =

∫
∗J4 =

∫

Π3×S2

F5 = N. (B.8)

The variation of the current implies that after the appearance of the instantonic brane,

Qafter =

∫
∗J4 =

∫

Π3×S2

F5 = N − M, (B.9)

from which we conclude that M D3-branes have disappeared and been transformed into

the flux H3 ∧ F̃0.
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